题目内容
【题目】如图,AC是ABCD的对角线,∠BAC=∠DAC.
(1)求证:AB=BC;
(2)若AB=2,AC=2,求ABCD的面积.
【答案】(1)详见解析;(2)2.
【解析】
试题分析:(1)根据已知条件易证∠BAC=∠BCA,即可得出AB=BC;(2)连接BD交AC于O,易证四边形ABCD是菱形,根据菱形的性质可得AC⊥BD,OA=OC=AC=,OB=OD=BD,根据勾股定理求出OB的长,即可得BD的长,利用ABCD的面积=ACBD,即可求得答案.
试题解析:(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠BCA,
∵∠BAC=∠DAC,
∴∠BAC=∠BCA,
∴AB=BC;
(2)解:连接BD交AC于O,如图所示:
∵四边形ABCD是平行四边形,AB=BC,
∴四边形ABCD是菱形,
∴AC⊥BD,OA=OC=AC=,OB=OD=BD,
∴OB===1,
∴BD=2OB=2,
∴ABCD的面积=ACBD=×2×2=2.
练习册系列答案
相关题目