题目内容
【题目】先化简,再求值:
阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+,其中n是正整数。现在我们来研究一个类似的问题:1×2+2×3+…=?
观察下面三个特殊的等式
将这三个等式的两边相加,可以得到1×2+2×3+3×4=
读完这段材料,请你思考后回答:(只需写出结果,不必写中间的过程)
(1)
(2)1×2+2×3+3×4+…+n×(n+1)=
(3)
【答案】(1)343400;(2)n(n+1)(n+2);(3)n(n+1)(n+2)(n+3).
【解析】
(1)根据三个特殊等式相加的结果,代入熟记进行计算即可求解;
(2)先对特殊等式进行整理,从而找出规律,然后把每一个算式都写成两个两个算式的运算形式,整理即可得解;
(3)根据(2)的求解规律,利用特殊等式的计算方法,先把每一个算式分解成两个算式的运算形式,整理即可得解.
因为1×2+2×3+3×43×4×5=20,即1×2+2×3+3×43×(3+1)×(3+2)=20,故:
(1)原式100×(100+1)×(100+2)100×101×102=343400;
(2)原式n(n+1)(n+2);
(3)∵1×2×3=[1×2×3×4﹣0×1×2×3],2×3×4=[2×3×4×5﹣1×2×3×4],...,n(n+1)(n+2)= [n(n+1)(n+2)(n+3)﹣n(n﹣1)(n+1)(n+2)]
∴原式=[1×2×3×4﹣0×1×2×3]+ [2×3×4×5﹣1×2×3×4]+...+ [n(n+1)(n+2)(n+3)﹣n(n﹣1)(n+1)(n+2)]=n(n+1)(n+2)(n+3).
故答案为:343400;n(n+1)(n+2);n(n+1)(n+2)(n+3).