题目内容

【题目】某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):

1号

2号

3号

4号

5号

总数

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.

请你回答下列问题:

(1)填空:甲班的优秀率为   ,乙班的优秀率为   

(2)填空:甲班比赛数据的中位数为   ,乙班比赛数据的中位数为   

(3)填空:估计两班比赛数据的方差较小的是   班(填甲或乙)

(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.

【答案】(1)60%,40%(2)100,97(3)(4)甲班

【解析】

(1)根据每人踢100个以上(含100)为优秀和图表给出的数据即可得出甲班和乙班的优秀率;

(2)根据中位数的定义先把数据从小到大排列,再找出最中间的数即可;

(3)先求出甲班和乙班的平均数,再根据方差公式即可得出答案;

(4)根据甲班的优秀率高于乙班,甲班的成绩从中位数看也高于乙班,甲班的方差小于乙班,成绩更稳定,从而得出答案.

(1)甲班的优秀率为:×100%=60%,乙班的优秀率为×100%=40%;

(2)把甲班比赛数据从小到大排列为:89,98,100,103,110,最中间的数是100,则甲班比赛数据的中位数为100;

把乙班比赛数据从小到大排列为:89,95,97,100,119,最中间的数是97,则乙班比赛数据的中位数为97;

故答案为:100,97;

(3)甲班的平均数是:(89+98+100+103+110)÷5=100(个);

乙班的平均数是:(89+95+97+100+119)÷5=100(个),

甲的方差是: [(89﹣100)2+(98﹣100)2+(100﹣100)2+(103﹣100)2+(110﹣100)2]=46.8,

乙的方差是: [(89﹣100)2+(95﹣100)2+(97﹣100)2+(100﹣100)2+(119﹣100)2]=103.2,

则甲班的方差较小;

故答案为:甲;

(4)甲班,理由:甲班的优秀率高于乙班,甲班的成绩从中位数看也高于乙班,甲班的方差小于乙班,成绩更稳定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网