题目内容
【题目】如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En,则O2016E2016=_____AC.
【答案】
【解析】
由O1E1∥AC可得出△BO1E1∽△BAC和△E1O1O2∽△ACO2,由相似三角形的性质可得出=和=,结合三角形中位线定理即可得出O2E2=AC,同理即可得出OnEn=AC,再代入n=2016即可得出结论.
解:∵O1E1∥AC,
∴∠BO1E1=∠BAC,∠BE1O1=∠BCA,
∴△BO1E1∽△BAC,
∴=.
∵CO1是△ABC的中线,
∴==.
∵O1E1∥AC,
∴∠O1E1O2=∠CAO2,∠E1O1O2=∠ACO2,
∴△E1O1O2∽△ACO2,
∴==.
∵O2E2∥AC,
∴==,
∴O2E2=AC.
同理:OnEn=AC.
∴O2016E2016==.
故答案为:.
【题目】某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 | 2号 | 3号 | 4号 | 5号 | 总数 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.
请你回答下列问题:
(1)填空:甲班的优秀率为 ,乙班的优秀率为 ;
(2)填空:甲班比赛数据的中位数为 ,乙班比赛数据的中位数为 ;
(3)填空:估计两班比赛数据的方差较小的是 班(填甲或乙)
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.