题目内容

【题目】如图:在平面直角坐标系中,直线l:y=x﹣x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=

(1)求抛物线的解析式;

(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PBx轴于点B,PCy轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PEPF;

(3)若(2)中的点P坐标为(6,2),点Ex轴上的点,点Fy轴上的点,当PEPF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.

【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).

【解析】

(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可;

(2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;

(3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可.

1)当y=0时,,解得x=4,即A40),抛物线过点A,对称轴是x=,得

解得,抛物线的解析式为y=x2﹣3x﹣4;

(2)∵平移直线l经过原点O,得到直线m,

∴直线m的解析式为y=x.

∵点P是直线1上任意一点,

∴设P(3a,a),则PC=3a,PB=a.

又∵PE=3PF,

∴∠FPC=EPB.

∵∠CPE+EPB=90°,

∴∠FPC+CPE=90°,

FPPE.

(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.

CF=3BE=18﹣3a,

OF=20﹣3a.

F(0,20﹣3a).

PEQF为矩形,

Qx+6=0+a,Qy+2=20﹣3a+0,

Qx=a﹣6,Qy=18﹣3a.

将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4a=8(舍去).

Q(﹣2,6).

如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.

CF=3BE=3a﹣18,

OF=3a﹣20.

F(0,20﹣3a).

PEQF为矩形,

Qx+6=0+a,Qy+2=20﹣3a+0,

Qx=a﹣6,Qy=18﹣3a.

将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8a=4(舍去).

Q(2,﹣6).

综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网