题目内容
【题目】如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有( )
A. 2对 B. 3对 C. 4对 D. 5对
【答案】C
【解析】试题分析:根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证,做题时要由易到难,循序渐进.
解:①△ODC≌△OEC,
∵BD⊥AO于点D,AE⊥OB于点E,OC平分∠AOB,
∴∠ODC=∠OEC=90°,∠1=∠2,
∵OC=OC,
∴△ODC≌△OEC(AAS),
∴OE=OD,CD=CE;
②△ADC≌△BEC,
∵∠CDA=∠CEB=90°,∠3=∠4,CD=CE,
∴△ADC≌△BEC(ASA),
∴AC=BC,AD=BE,∠B=∠A;
③△OAC≌△OBC,
∵OD=OE,
∴OA=OB,
∵OA=OB,OC=OC,AC=BC,
∴△OAC≌△OBC(SSS);
④△OAE≌△OBD,
∵∠ODB=∠OEA=90°,OA=OB,OD=OE,
∴△OAE≌△OBD(HL).
故选C.
【题目】某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:_____
x | 0 | 1 | 2 | 3 | 4 |
y | 3 | 0 | ﹣2 | 0 | 3 |
【题目】有这样一个问题:探究函数的图象与性质.
小东根据学习一次函数的经验,对函数的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)在函数中,自变量x可以是任意实数;
下表是y与x的几组对应值.
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | m | … |
求m的值;
在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;
(3)结合函数图象,写出该函数的一条性质:__________.