题目内容
【题目】如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为( )
A.B.C.D.
【答案】C
【解析】
设D′C′与BC的交点为E,连接AE,利用“HL”证明Rt△AD′E和Rt△ABE全等,根据全等三角形对应角相等∠BAE=∠D′AE,再根据旋转角求出∠BAD′=60°,然后求出∠BAE=30°,再解直角三角形求出BE,然后根据阴影部分的面积=正方形ABCD的面积-四边形ABED′的面积,列式计算即可得解.
解:如图,D′C′与BC的交点为E,连接AE,
在Rt△AD′E和Rt△ABE中,
∵,
∴Rt△AD′E≌Rt△ABE(HL),
∴∠BAE=∠D′AE,
∵旋转角为30°,
∴∠BAD′=60°,
∴∠BAE=×60°=30°,
∴BE=1×=,
∴阴影部分的面积=1×12×(×1×)=1.
故选:C.
练习册系列答案
相关题目