题目内容
【题目】如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=( )
A.52°B.90°C.128°D.38°
【答案】C
【解析】
先证明△BDC≌△AEC,进而得到角的关系,再由∠EBD的度数进行转化,最后利用三角形的内角和即可得到答案.
∵∠ACB=∠ECD=90°,
∴∠BCD=∠ACE,
在△BDC和△AEC中,
∵AC=BC,∠BCD=∠ACE,DC=EC,
∴△BDC≌△AEC(SAS),
∴∠DBC=∠EAC,
∵∠EBD=∠DBC+∠EBC=38°,
∴∠EAC+∠EBC=38°,
∴∠ABE+∠EAB=90°-38°=52°,
∴∠AEB=180°-(∠ABE+∠EAB)=180°-52°=128°,
故答案为C.
练习册系列答案
相关题目
【题目】某中学对九年级准备选考1分钟跳绳的同学进行测试,测试结果如下表:
频数分布表:
组别 | 跳绳(次/1分钟) | 频数 |
第1组 | 190~199 | 5 |
第2组 | 180~189 | 11 |
第3组 | 170~179 | 23 |
第4组 | 160~169 | 33 |
请回答下列问题:
(1)此次测试成绩的中位数落在第 组中;
(2)如果成绩达到或超过180次/分钟的同学可获满分,那么本次测试中获得满分的人数占参加测试人数的 %;
(3)如果该校九年级参加体育测试的总人数为200人,若要绘制一张统计该校各项目选考人数分布的扇形图(如图),图中A所在的扇形表示参加选考1分钟跳绳的人数占测试总人数的百分比,那么该扇形的圆心角应为 °;
(4)如果此次测试的平均成绩为171次/分钟,那么这个成绩是否可用来估计该校九年级学生跳绳的平均水平?为什么?