题目内容

(1)先求解下列两题:

①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;
②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数 (x>0)的图象经过点B,D,求k的值.
(2)解题后,你发现以上两小题有什么共同点?请简单地写出.

(1)①21°  ②k=3  (2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.

解析解:(1)①∵AB=BC=CD=DE,
∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,
根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,
又∵∠EDM=84°,
∴∠A+3∠A=84°,
解得,∠A=21°;
②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,
∴点B(3,),
∵BC=2,
∴点C(3,+2),
∵AC∥x轴,点D在AC上,且横坐标为1,
∴A(1,+2),
∵点A也在反比例函数图象上,
+2=k,
解得,k=3;
(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网