题目内容
【题目】如图,在△ABC中,AC⊥BC,AC=BC,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.
(1)求证:△ACE≌△BCF.
(2)求证:BF=2AD,
(3)若CE=,求AC的长.
【答案】(1)证明见解析;(2)证明见解析;(3)2+.
【解析】
(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE;
(2)由(1)得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;
(3)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.
(1)∵AC⊥BC,BD⊥AE
∴∠FCB=∠BDA=90°
∠CBF+∠CFB=90°,∠DAF+∠AFD=90°
∵∠CFB=∠AFD
∴∠CBF=∠CAE
∵AC=BC
∴△ACE≌△BCF
(2)由(1)知△ACE≌△BCF得AE=BF
∵BE=BA,BD⊥AE
∴AD=ED,即AE=2AD
∴BF=2AD
(3)由(1)知△ACE≌△BCF
∴CF=CE=
∴在Rt△CEF中,EF==2,
∵BD⊥AE,AD=ED,
∴AF=FE=2,
∴AC=AF+CF=2+.
【题目】弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
弹簧总长L(cm) | 16 | 17 | 18 | 19 | 20 |
重物质量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.