题目内容
【题目】如图,已知四点A、B、C、D.
(1)用圆规和无刻度的直尺按下列要求与步骤画出图形:
①画直线AB.
②画射线DC.
③延长线段DA至点E,使.(保留作图痕迹)
④画一点P,使点P既在直线AB上,又在线段CE上.
(2)在(1)中所画图形中,若cm,cm,点F为线段DE的中点,求AF的长.
【答案】(1)见解析;(2)0.5cm.
【解析】
(1)①画直线AB,直线向两边无限延伸;②画射线DC,D为端点,再沿CD方向延长;③画线段DA和AE,线段不能向两方无限延伸;④画线段CE,与直线AB相交于P;(2)利用线段之间的关系解答即可;
解:
(1)如图,该图为所求,
(2)∵AB=2cm,AB=AE,
∴AE=2cm,AD=1cm,
∵点F为DE的中点,
∴EF=DE=cm,
∴AF=AE-EF=2-=cm;
∴AF=0.5cm.
练习册系列答案
相关题目
【题目】如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.乐乐用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)增长或缩短.经测量,得到如下数据:
单层部分的长度(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
双层部分的长度(cm) | … | 73 | 72 | 71 |
| … | 0 |
(1)根据上表中数据的规律,填写表格中空白处的数据;
(2)设单层部分的长度为xcm,请用含x的代数式表示出双层部分的长度 cm;
(3)根据乐乐的身高和习惯,挎带的长度为110cm时,背起来最舒适,请求出此时单层部分的长度.