题目内容

如图△ABC中,AB=AC,EFBC,且⊙O内切于四边形BCFE.
(1)当
AE
BE
=
1
2
时,sinB=______;
(2)当
AE
BE
=
1
n
时,sinB等于多少?请说明理由.
连接AO并延长交EF于点D,交BC于点H,则AH⊥BC,连接OG,则OG⊥AB
(1)∵∠BAH+∠AOG=90°,∠B+∠BAH=90°
∴∠AOG=∠B,
∵EFBC
AD
DH
=
AE
EB
=
1
2

设⊙O的半径为r,则
AD
2r
=
1
2

∵AD=
2r
2
=r
∴AO=2r
又∵OG=r
∴AG=
(2r)2-r2
=
3
r
∴sinB=
3
2


(2)sinB=
2
n+1
n+2

设AB与⊙O相切于点G,连接OG,则OG⊥AB
∴∠AOG=∠B
∵EFBC
AD
DH
=
AE
EB
=
1
n

设⊙O的半径为r,则
AD
2r
=
1
n

∵AD=
2r
n

∴AO=AD+r=
n+2
n
r

又∵OG=r
∴AG=
AO2-OG2
=
(
n+2
n
r)
2
-r2
=
2
n+1
n
r
∴sinB=sin∠AOG=
AG
AO
=
2
n+1
2
r
n+2
n
r
=
2
n+1
n+2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网