题目内容

如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为4,求点A到CD所在直线的距离.
(1)∵△ACD是等腰三角形,∠D=30°,
∴∠CAD=∠CDA=30°.
连接OC,
∵AO=CO,
∴△AOC是等腰三角形,
∴∠CAO=∠ACO=30°,
∴∠COD=60°,
在△COD中,又∵∠CDO=30°,
∴∠DCO=90°
∴CD是⊙O的切线,即直线CD与⊙O相切.

(2)过点A作AE⊥CD,垂足为E.
在Rt△COD中,∵∠CDO=30°,
∴OD=2OC=8,
AD=AO+OD=4+8=12
在Rt△ADE中,∵∠EDA=30°,
∴点A到CD边的距离为:AE=
AD
2
=6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网