题目内容

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于E点,点D是BC边的中点,连接DE.
(1)请判断DE与⊙O是怎样的位置关系?请说明理由.
(2)若⊙O的半径为4,DE=3,求AE的长.
(1)相切.
证明:连接OE,BE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE⊥AC,
∴在Rt△BEC中,点D是BC边的中点,
∴DE=BD=CD=
1
2
BC,
∴∠3=∠4,
∵∠ABC=90°,OB=OE,
∴∠1=∠2,∠1+∠4=90°,
∴∠2+∠3=90°,
∴DE⊥OE,
∴DE是⊙O的切线;

(2)∵∠AEO+∠2=90°,∠2+∠3=90°,
∴∠AEO=∠3,
∵OA=OE,
∴∠A=∠AEO,
∵∠3=∠4,
∴∠AEO=∠4,
∴△AEO△EBD,
OA
DE
=
AE
BE

设AE=x,则BE=
AB2-AE2
=
64-x2

4
3
=
x
64-x2

∴x=6.4.
∴AE=6.4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网