题目内容
【题目】如图,在平面直角坐标系中,抛物线(是常数,且)与轴交于、两点(点在点的左边),与轴交于点.连结,将线段绕点顺时针旋转,得到线段,连结.当最短时,的值为_________ .
【答案】
【解析】
过点D作DE⊥x轴于点E,先由函数关系式求出点A、B的坐标进而求得OA、OB的长,再由旋转可得AC=AD,∠CAD=90°,由此可证得△ACO≌△DAE,进而可表示出DE和BE的长,最后利用勾股定理表示出BD2,进而即可求得当最短时的的值.
解:如图,过点D作DE⊥x轴于点E,则∠AED=90°,
令y=0,则
解得:,
∴OA=1,OB=3,
∴AB=OB-OA=2,
令x=0,则y=3a,
∴OC=3a,
∵旋转,
∴AC=AD,∠CAD=90°,
∴∠CAO+∠DAE=90°,
∵∠COA=90°,
∴∠CAO+∠ACO=90°,
∴∠ACO=∠DAE,
在△ACO与△DAE中,
∴△ACO≌△DAE(AAS),
∴DE=OA=1,AE=OC=3a,
∴BE=AE-AB=3a-2,
∴BD2=BE2+DE2=(3a-2)2+1≥1,
当3a-2=0即a=时,BD取得最小值.
故答案为:.
【题目】某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:
x(件) | … | 5 | 10 | 15 | 20 | … |
y(元/件) | … | 75 | 70 | 65 | 60 | … |
(1)由题意知商品的最低销售单价是 元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;
(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?
【题目】某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销件.已知产销两种产品的有关信息如下表:
产品 | 每件售价(万元) | 每件成本(万元) | 每年其他费用(万元) | 每年最大产销量(件) |
甲 | 6 | 20 | 200 | |
乙 | 30 | 20 | 80 |
其中为常数,且.
(1)若产销甲、乙两种产品的年利润分别为万元、万元,直接写出、与的函数关系式(写出自变量的取值范围);
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
【题目】根据完全平方公式可以作如下推导(a、b都为非负数)
∵ a-2+b=(-)2≥0 ∴ a-2+b≥0
∴ a+b≥2 ∴ ≥
其实,这个不等关系可以推广,≥
… …
(以上an都是非负数)
我们把这种关系称为:算术—几何均值不等式
例如:x为非负数时,,则有最小值.
再如:x为非负数时,x+x+.
我们来研究函数:
(1)这个函数的自变量x的取值范围是 ;
(2)完成表格并在坐标系中画出这个函数的大致图象;
x | … | -3 | -2 | -1 | 1 | 2 | 3 | … | ||
y | … | 3 | 5 | … |
(3)根据算术—几何均值不等式,该函数在第一象限有最 值,是 ;
(4)某同学在研究这个函数时提出这样一个结论:当x>a时,y随x增大而增大,则a的取值范围是 .
【题目】某学校七年级共有500名学生,为了解该年级学生的课外阅读情况,将从中随机抽取的40名学生一个学期的阅读量(阅读书籍的本数)作为样本,根据数据绘制了如下的表格和统计图:
等级 | 阅读量(本) | 频数 | 频率 |
E | x≤2 | 4 | 0.1 |
D | 2<x≤4 | 12 | 0.3 |
C | 4<x≤6 | a | 0.35 |
B | 6<x≤8 | c | b |
A | x>8 | 4 | 0.1 |
根据上面提供的信息,回答下列问题:
(1)统计表中的 , ;并补全条形统计图;
(2)根据抽样调查结果,请估计该校七年级学生一学期的阅读量为“等”的有多少人?
(3)样本中阅读量为“等”的4名学生中有2名男生和2名女生,现从中随机挑选2名同学参加区里举行的“语文学科素养展示”活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.