题目内容
【题目】如图,在梯形中,,中位线与对角线交于两点,若cm, cm,则的长等于( )
A. 10 cm B. 13 cm C. 20 cm D. 26 cm
【答案】D
【解析】分析:根据梯形的中位线的定理和平行线分线段成比例定理求出AM=CM,NB=DN,然后根据三角形的中位线定理求出CD的长,然后再根据梯形的中位线定理求出AB的长即可.
详解:∵EF是梯形的中位线,
∴EF∥CD∥AB.
∴AM=CM,BN=DN.
∴EM是△ACD的中位线,NF是△BCD的中位线,
∴EM=CD,NF=CD.
∴EM=NF==5,即CD=10.
∵EF是梯形ABCD的中位线,
∴DC+AB=2EF,即10+AB=2×18=36.
∴AB=26.
故选D.
【题目】天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格
阶梯 | 用户年用气量 (单位:立方米) | 2018年单价 (单位:元/立方米) | 2019年单价 (单位:元/立方米) |
第一阶梯 | 0-300(含) | 3 | |
第二阶梯 | 300-600(含) | 3.5 | |
第三阶梯 | 600以上 | 5 |
(1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含的代数式表示);
(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求的值;
(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数为_____;运动员乙测试成绩的中位数为_____;运动员丙测试成绩的平均数为_____;
(2)经计算三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)