题目内容
【题目】解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)
华夏专车 | 神州专车 | |
里程费 | 1.8元/千米 | 2元/千米 |
时长费 | 0.3元/分钟 | 0.6元/分钟 |
远途费 | 0.8元/千米产(超过7千米部分) | 无 |
起步价 | 无 | 10元 |
华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出的部分按每千米加收0.8元. 神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;起步价与行车距离无关. |
(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为 元;
(2)小强在该地区从甲地乘坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?
(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.
【答案】(1)26.4;(2) 10千米;(3) 距离在7千米到12.25千米之间时,华夏专车更合算;距离在12.25千米时,一样合算;距离在大于12.25千米之间时,神州专车更合算.
【解析】
(1)根据华夏专车的车费计算方法即可求解;
(2)设甲乙两地距离为x千米,根据题意列出一元一次方程即可求解;
(3)设乘车路程为a千米,根据题意分别表示出两种乘车方式的费用,比较即可求解.
(1)小明在该地区出差,乘车距离为10千米,
时间为10÷0.5=20(分钟)
若使用华夏专车,需要支付的打车费用为1.8×10+0.3×20+(10-7)×0.8=26.4元;
故答案为:26.4;
(2) 设甲乙两地距离为x千米,根据题意得
10+2x+0.6×=42
解得x=10,
∴甲乙两地距离是10千米;
(3)设乘车路程为a千米(a≥7)
∴华夏专车的费用为:=3.2a-14.6;
神州专车的费用为:0.5×()=1.6a+5;
令3.2a-14.6=1.6a+5
解得a=12.25
故7≤a<12.25时,华夏专车更合算;
a=12.25,一样合算;
a>12.25时,神州专车合算
即距离在7千米到12.25千米之间时,华夏专车更合算;距离在12.25千米时,一样合算;距离在大于12.25千米之间时,神州专车更合算.
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm,点D是线段AB上一动点,将线段CD绕点C逆时针旋转50°至CD′,连接BD′.设AD为xcm,BD′为ycm.
小夏根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小夏的探究过程,请补充完整.
(1)通过取点、画图、测量,得到了与的几组值,如下表:
1 | 2 | 3 | 3.5 | 4 | 5 | 6 | ||
3.5 | 1.5 | 0.5 | 0.2 | 0.6 | 1.5 | 2.5 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BD=BD'时,线段AD的长度约为_________.