题目内容
【题目】如图,已知点E,F分别是ABCD的边BC,AD上的中点,且∠BAC=90°,若∠B=30°,BC=10,则四边形AECF的面积为__.
【答案】 .
【解析】
由条件可先证得四边形AECF为菱形,连接EF交AC于点O,解直角三角形求出AC、AB,由三角形中位线定理求出OE,得出EF,菱形AECF的面积=ACEF,即可得出结果.
解:∵四边形ABCD是平行四边形,
∴AD=BC,
在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
∴AE=BC=CE,
同理,AF=AD=CF,
∴AE=CE=AF=CF,
∴四边形AECF是菱形,
连接EF交AC于点O,如图所示:
在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,
∴AC=BC=5,AB=AC=5,
∵四边形AECF是菱形,
∴AC⊥EF,OA=OC,
∴OE是△ABC的中位线,
∴OE=AB=,
∴EF=5,
∴S菱形AECF=ACEF=×5×5=,
故答案为:.
练习册系列答案
相关题目