题目内容

【题目】如图,RtABC中,ACBCAEAOBFBO,则∠EOF的度数是_____

【答案】45°

【解析】

先根据直角三角形的性质可求∠A+B=90°,再根据三角形内角和可得:∠A+B+AEO+AOE+BOF+BFO=360°,继而求出∠AEO+AOE+BOF+BFO=270°

根据AEAOBFBO,可得∠AEO=AOE,∠BOF=BFO,继而可得2∠AOE+2BOF =270°,因此∠AOE+BOF =135°,最后根据补角可求出∠EOF.

因为ACBC,

所以C=90°,

所以∠A+B=90°,

由三角形内角和可得:∠A+AEO+AOE=180°,∠B +BOF+BFO=180°,

所以∠A+B+AEO+AOE+BOF+BFO=360°,

所以∠AEO+AOE+BOF+BFO=270°

因为AEAOBFBO

所以∠AEO=AOE,∠BOF=BFO

所以 2∠AOE+2BOF =270°

所以∠AOE+BOF =135°

所以∠EOF=180°-135°=45°.

故答案为:45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网