题目内容
【题目】如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.
(1)求证:DF是⊙O的切线;
(2)若AD=DP,OB=3,求的长度;
(3)若DE=4,AE=8,求线段EG的长.
【答案】(1)证明见解析(2)π(3)2
【解析】试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;
(2)易得∠BOD=60°,再由弧长公式求解即可;
(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.
试题解析:(1)证明:连接OD,如图1所示:
∵OA=OD,
∴∠DAB=∠ADO,
∵∠DAF=∠DAB,
∴∠ADO=∠DAF,
∴OD∥AF,
又∵DF⊥AF,
∴DF⊥OD,
∴DF是⊙O的切线;
(2)∵AD=DP
∴∠P=∠DAF=∠DAB =x0
∴∠P+∠DAF+∠DAB =3xo=90O
∴x0=300
∴∠BOD=60°,
∴的长度=
(3)解:连接DG,如图2所示:
∵AB⊥CD,
∴DE=CE=4,
∴CD=DE+CE=8,
设OD=OA=x,则OE=8﹣x,
在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,
即(8﹣x)2+42=x2,
解得:x=5,
∴CG=2OA=10,
∵CG是⊙O的直径,
∴∠CDG=90°,
∴DG==6,
∴EG==.
【题目】某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大请将他们的探究过程补充完整。
(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=_________。
(2)上述函数表达式中,自变量x的取值范围是____________;
(3)列表:
x | ... | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | ... |
y | ... | 1.75 | 3 | 3.75 | 4 | 3.75 | 3 | m | ... |
写出m=__________;
(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;
(5)结合图象可得:x=_______时,矩形的面积最大: 写出该函数的其它性质(一条即可):_______________________________________.