题目内容
【题目】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于( )
A.20B.24C.﹣20D.﹣24
【答案】D
【解析】
先根据题意得出S菱形ABCO=2S△CDO,再进一步根据tan∠AOC=求出点C的坐标,然后代入反比例函数解析式即可.
解:作DE∥AO,CF⊥AO,设CF=4x,
∵四边形OABC为菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴S△ADO=S△DEO,
同理S△BCD=S△CDE,
∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,
∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,
∵tan∠AOC=,
∴OF=3x,
∴OC=5x,
∴OA=OC=5x,
∵S菱形ABCO=AOCF=20x2,解得:x=,
∴OF=3,CF=4,
∴点C坐标为(3,4),
∵反比例函数y=的图象经过点C,
∴代入点C得:k=24,
故选:D.
【题目】今年4月23日,是第16个世界读书日.某校为了解学生每周课余自主阅读的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如图不完整的统计图表,请根据图表中的信息解答下列问题
组别 | 学习时间x(h) | 频数(人数) |
A | 0<x≤1 | 8 |
B | 1<x≤2 | 24 |
C | 2<x≤3 | 32 |
D | 3<x≤4 | n |
E | 4小时以上 | 4 |
(1)表中的n= ,中位数落在 组,扇形统计图中B组对应的圆心角为 °;
(2)请补全频数分布直方图;
(3)该校准备召开利用课余时间进行自主阅读的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.