题目内容
【题目】今年4月23日,是第16个世界读书日.某校为了解学生每周课余自主阅读的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如图不完整的统计图表,请根据图表中的信息解答下列问题
组别 | 学习时间x(h) | 频数(人数) |
A | 0<x≤1 | 8 |
B | 1<x≤2 | 24 |
C | 2<x≤3 | 32 |
D | 3<x≤4 | n |
E | 4小时以上 | 4 |
(1)表中的n= ,中位数落在 组,扇形统计图中B组对应的圆心角为 °;
(2)请补全频数分布直方图;
(3)该校准备召开利用课余时间进行自主阅读的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.
【答案】(1)12,C,108;(2)补图见解析;(3)抽取的两名学生都来自九年级的概率为.
【解析】
(1)先求出调查的总人数,随后用15%乘以调查总人数即可得出n;然后根据中位数的定义进一步求出中位数具体在哪组即可;最后用B所占总人数的百分比乘以360°即可得出所对应的圆心角度数;
(2)由(1)可得n的值,据此进一步补全图形即可;
(3)画出树状图,然后进一步求出概率即可.
(1)调查的总人数为8÷10%=80,
则n=15%×80=12,
由于共有80个数据,
∴中位数为第40、41个数据的平均数,而第40、41个数据均落在C组,
∴中位数落在C组,
扇形统计图中B组对应的圆心角为×360°=108°,
故答案为:12,C,108;
(2)如下图所示:
(3)画树状图如下:
共12种可能,抽取的两名学生都来自九年级的有2种可能,
∴P(两个学生都是九年级)=,
答:抽取的两名学生都来自九年级的概率为.
【题目】如图,抛物线与轴交于、两点,与轴交于点,且,.
(1)求抛物线的解析式;
(2)已知抛物线上点的横坐标为,在抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
【题目】甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
根据以上信息,整理分析数据如下:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)a=_____;b=_____;c=_____;
(2)填空:(填“甲”或“乙”).
①从平均数和中位数的角度来比较,成绩较好的是_____;
②从平均数和众数的角度来比较,成绩较好的是_____;
③成绩相对较稳定的是_____.
【题目】在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:
(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);
(信息二)图中,从左往右第四组的成绩如下
75 | 75 | 79 | 79 | 79 | 79 | 80 | 80 |
81 | 82 | 82 | 83 | 83 | 84 | 84 | 84 |
(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):
小区 | 平均数 | 中位数 | 众数 | 优秀率 | 方差 |
A | 75.1 | 79 | 40% | 277 | |
B | 75.1 | 77 | 76 | 45% | 211 |
根据以上信息,回答下列问题:
(1)求A小区50名居民成绩的中位数.
(2)请估计A小区500名居民中能超过平均数的有多少人?
(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.