题目内容
【题目】如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E.
(1)求证:AC是⊙O的切线;
(2)若AD∶DB=3∶2,AC=15,求⊙O的直径;
(3)在(2)的条件下,求的值;
【答案】(1)见解析;(2);(3)
【解析】
(1)连接OD,OE,求出DE=CE,证明△ODE≌△OCE,得到∠OCE=∠ODE=90°即可;
(2)证明△ADC∽△ACB,得出,然后根据求出AB,由勾股定理可得答案;
(3)根据进行计算即可.
解:(1)连接OD,OE,
∵切线DE平分AC于E,
∴∠ODE=90°,
∵BC是⊙O的直径,
∴∠BDC=∠ADC=90°,
∴在Rt△ADC中DE=CE,
∵OE=OE,OD=OC,
∴△ODE≌△OCE,
∴∠OCE=∠ODE=90°,即OC⊥AC,
∴AC是⊙O的切线;
(2)∵∠ADC=∠ACB=90°,∠A=∠A,
∴△ADC∽△ACB,
∴,
∴,
∵,
∴,
∴,,
∴;
(3)∵DE=CE,
∴∠EDC=∠ECD,
∴.
练习册系列答案
相关题目
【题目】甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)
数与代数 | 空间与图形 | 统计与概率 | 综合与实践 | |
学生甲 | 93 | 93 | 89 | 90 |
学生乙 | 94 | 92 | 94 | 86 |
(1)分别计算甲、乙同学成绩的中位数;
(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?