题目内容
【题目】如图,已知正方形ABCD,将一块等腰直角三角板的锐角顶点与A重合,并将三角板绕A点旋转,如图1,使它的斜边与BD交于点H,一条直角边与CD交于点G.
(1)请适当添加辅助线,通过三角形相似,求出的值;
(2)连接GH,判断GH与AF的位置关系,并证明;
(3)如图2,将三角板旋转至点F恰好在DC的延长线上时,若AD=,AF=.求DG的长.
【答案】(1);(2)GH⊥AF,理由见解析;(3)
【解析】试题分析:(1)连接AC,利用等量代换,求出∠BAH=∠GAC,再加上45的角,即可求出△BAH∽△CAG,进而得出结论;(2)先回答位置关系GH⊥AF,再证明,利用(1)问的结论,利用两边对应成比例且夹角相等得出△HAG∽△EAF,得出比例式即可;(3)判断出△AGD∽△FGE,得出,设出未知数,求出AG、EG的长度,利用相似即可求出DG的长度.
试题解析:
(1)连接AC
∵四边形ABCD是正方形
∴∠BAC=∠ABH=∠ABH=45,
又∵△AEF是等腰直角三角形
∴∠EAH=45
∴∠BAH+∠EAC=∠FAC+∠EAC=45
∴∠BAH=∠GAC
∴△BAH∽△CAG.
∴
(2)GH⊥AF,理由如下:
∵在Rt△AEF中,
∴
又∵∠HAG=∠EAF
∴△HAG∽△EAF.
∴∠AHG=∠E=90
∴GH⊥AF..
(3)∵在Rt△AGH中,
∴AG=GH
又∵∠ADG=∠E=90,∠AGD=∠FGE
∴△AGD∽△FGE
∴.
又∵在Rt△AEF中,AF=
∴EF=5
∴
∴
∴
∴可设GH为,则
∴AF=AH+FH=
∴
∴AG=GH
∴
又∵
∴
∴DG=
练习册系列答案
相关题目