题目内容

【题目】如图,M、N分别是正方形ABCD边DC、AB的中点,分别以AE、BF为折痕,使点D、点C落在MN的点G处,则△ABG是 三角形.

【答案】等边
【解析】解:由折叠的性质可知AG=AD,BG=BC,
∵四边形ABCD是正方形,
∴AD=AB=BC.
∴AG=AB=BG.
∴△ABG是等边三角形.
所以答案是:等边.
【考点精析】本题主要考查了等边三角形的判定和正方形的性质的相关知识点,需要掌握三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网