题目内容
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:
①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正确的结论是( )
A.①③④
B.①②③
C.①②④
D.①②③④
【答案】B
【解析】①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,0),当x>3时,y<0,故①正确;
②抛物线开口向下,故a<0,
∵x=﹣=1,
∴2a+b=0.
∴3a+b=0+a=a<0,故②正确;
③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a,
令x=0得:y=﹣3a.
∵抛物线与y轴的交点B在(0,2)和(0,3)之间,
∴2≤﹣3a≤3.
解得:﹣1≤a≤﹣,故③正确;
④.∵抛物线y轴的交点B在(0,2)和(0,3)之间,
∴2≤c≤3,
由4ac﹣b2>8a得:4ac﹣8a>b2 ,
∵a<0,
∴c﹣2<
∴c﹣2<0
∴c<2,与2≤c≤3矛盾,故④错误.
故选:B.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
【题目】如图,△ABC为等边三角形,过点B作BD⊥AC于点D , 过D作DE∥BC , 且DE=CD , 连接CE ,
(1)求证:△CDE为等边三角形;
(2)请连接BE , 若AB=4,求BE的长.
【题目】某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成就如下表:(单位:分)
项目 | 教学能力 | 科研能力 | 组织能力 |
甲 | 86 | 93 | 73 |
乙 | 81 | 95 | 79 |
(1)根据实际需要,将阅读能力、科研能力、组织能力三项测试得分按5:3:2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.