题目内容

27、如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.
分析:(1)根据对角线互相垂直的平行四边形是菱形.由题意易得△AOE≌△COE,∴∠AOE=∠COE=90°,∴BE⊥AC,∴四边形ABCD是菱形;
(2)根据有一个角是90°的菱形是正方形.由题意易得∠ADO=∠DAE+∠DEA=15°+30°=45°,∵四边形ABCD是菱形,∴∠BAD=2∠DAO=90°,∴四边形ABCD是正方形.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴AO=CO.
∵△ACE是等边三角形,
∴EO⊥AC(三线合一)
∴四边形ABCD是菱形.

(2)从上易得:△AOE是直角三角形,
∴∠AED+∠EAO=90°
∵△ACE是等边三角形,
∴∠EAO=60°,
∴∠AED=30°
∵∠AED=2∠EAD
∴∠EAD=15°,
∴∠DAO=∠EAO-∠EAD=45°
∵四边形ABCD是菱形.
∴∠BAD=2∠DAO=90°
∴平行四边形ABCD是正方形.
点评:此题主要考查菱形和正方形的判定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网