搜索
题目内容
如图,AB、CD为⊙O两弦,且AB=CD,M、N分别为AB、CD的中点,求证:∠AMN=∠CNM.
试题答案
相关练习册答案
证明:连接OM,ON.
∵M、N分别为AB、CD的中点,
∴∠AMO=∠CNO=90°,
又∵AB=CD,
∴OM=ON,
∴∠OMN=∠ONM,
∴∠AMO-∠OMN=∠CNO-∠ONM,
∴∠AMN=∠CNM.
练习册系列答案
大联考期末复习合订本系列答案
新题型全能测评课课练天津科学技术出版社系列答案
浙江新期末系列答案
世超金典假期乐园寒假系列答案
通城1典中考复习方略系列答案
特优好卷全能试题系列答案
世纪金榜金榜AB卷系列答案
北斗星小状元快乐学习系列答案
高中课程标准同步训练系列答案
探究与巩固河南科学技术出版社系列答案
相关题目
如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.
(1)求sin∠BAC的值;
(2)如果OE⊥AC,垂足为E,求OE的长;
(3)求tan∠ADC的值.(结果保留根号)
如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°,圆心C的坐标是______.
△ABC为⊙O的内接三角形,D为劣弧
AC
上的一点,若∠AOC=160°,则:
(1)∠ABC=______;
(2)∠ADC=______.
如图,AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD=______.
如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧
AC
的中点,BD交AC于点E.
(1)求证:AD
2
=DE•DB;
(2)若BC=
5
2
,CD=
5
2
,求DE的长.
已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别是OA、OB的中点.求证:MC=NC.
如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为( )
A.30°
B.40°
C.50°
D.60°
如图,点C在以AB为直径的⊙O上,AB=10,∠A=30°,则BC的长为______.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总