题目内容

在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),点B的坐标为,与y轴交于点,顶点为D。

(1)求抛物线的解析式及顶点D坐标;
(2)联结AC、BC,求∠ACB的正切值;

(1)y=(x-2)2-1,D(2,-1);(2).

解析试题分析:(1)把点B与点C的坐标代入抛物线解析式,利用待定系数法求解,把解析式整理成顶点式即可写出顶点坐标;
(2)首先得出A点坐标,进而得出∠OBC=45°,BC=3,再过点A作AH⊥BC,垂足为H,利用tAn∠ACB=求出即可.
试题解析: (1)∵抛物线过点B(3,0),点C(0,3),
,解得
∴抛物线解析式为:y=x2-4x+3,
又∵y=x2-4x+3=(x-2)2-1,
∴顶点D的坐标是:D(2,-1);
(2)∵抛物线y=x2-4x+3与x轴交于点A、B两点(点A在B点的左侧),
∴A(1,0),
又∵O(0,0),C(0,3),B(3,0),
∴BO=CO=3,
∵∠COB=90°,
∴∠OBC=45°,BC=3
过点A作AH⊥BC,垂足为H,
∴∠AHB=90°,
∵AB=2,∴AH=BH=
∴CH=BC-BH=2
∴tAn∠ACB=.
考点: 二次函数综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网