题目内容
【题目】如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:
①;②;③.其中正确的是( )
A. ①②③ B. ① C. ①② D. ②③
【答案】A
【解析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;
(2)通过等积式倒推可知,证明△PAM∽△EMD即可;
(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.
由已知:AC=AB,AD=AE
∴
∵∠BAC=∠EAD
∴∠BAE=∠CAD
∴△BAE∽△CAD
所以①正确
∵△BAE∽△CAD
∴∠BEA=∠CDA
∵∠PME=∠AMD
∴△PME∽△AMD
∴
∴MPMD=MAME
所以②正确
∵∠BEA=∠CDA
∠PME=∠AMD
∴P、E、D、A四点共圆
∴∠APD=∠EAD=90°
∵∠CAE=180°-∠BAC-∠EAD=90°
∴△CAP∽△CMA
∴AC2=CPCM
∵AC=AB
∴2CB2=CPCM
所以③正确
故选A.
练习册系列答案
相关题目