题目内容

【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD,AC分别交于点E,F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB= ,BC=2,求⊙O的半径.

【答案】
(1)解:直线CE与⊙O相切.

理由如下:

∵四边形ABCD是矩形,

∴BC∥AD,∠ACB=∠DAC;

又∵∠ACB=∠DCE,

∴∠DAC=∠DCE;

连接OE,则∠DAC=∠AEO=∠DCE;

∵∠DCE+∠DEC=90°

∴∠AE0+∠DEC=90°

∴∠OEC=90°,即OE⊥CE.

又OE是⊙O的半径,

∴直线CE与⊙O相切


(2)解:∵tan∠ACB= = ,BC=2,

∴AB=BCtan∠ACB=

∴AC=

又∵∠ACB=∠DCE,

∴tan∠DCE=tan∠ACB=

∴DE=DCtan∠DCE=1;

方法一:在Rt△CDE中,CE= =

连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即 =r2+3

解得:r=

方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM= AE=

在Rt△AMO中,OA= = ÷ =


【解析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB= ,然后根据勾股定理求得AC= ,同理知DE=1; 方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2 , 即 =r2+3,从而易得r的值;
方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网