题目内容
【题目】下面是“作一个角”的尺规作图过程.
已知:平面内一点A.
求作:,使得.
作法:如图,
(1)作射线;
(2)在射线取一点O,以O为圆心,为半径作圆,与射线相交于点C;
(3)以C为圆心,C为半径作弧,与交于点D,作射线.
则即为所求的角.
请回答:该尺规作图的依据是_________________.
【答案】同圆或等圆半径相等,三边相等的三角形是三角形,等边三角形的内角是,一条弧所对的圆周角是它所对圆心角的一半.
【解析】
根据尺规作图过程,进行证明,即可得出结论.
解:证明:连接CD,OD.
由圆的定义和尺规作图得:OD=OC=CD,(圆的半径都相等)
∴△OCD是等边三角形,(三边相等的三角形是三角形)
∴∠DOC=60°,(等边三角形的内角是)
∴.(一条弧所对的圆周角是它所对圆心角的一半)
故答案为:同圆或等圆半径相等,三边相等的三角形是三角形,等边三角形的内角是,一条弧所对的圆周角是它所对圆心角的一半.
【题目】小腾的爸爸计划将一笔资金用于不超过10天的短期投资,针对这笔资金,银行专属客户经理提供了三种投资方案,这三种方案的回报如下:
方案一:每一天回报30元;
方案二:第一天回报8元,以后每一天比前一天多回报8元;
方案三:第一天回报0.5元,以后每一天的回报是前一天的2倍.
下面是小腾帮助爸爸选择方案的探究过程,请补充完整:
(1)确定不同天数所得回报金额(不足一天按一天计算),如下表:
天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
方案一 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
方案二 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
方案三 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 |
其中________;
(2)计算累计回报金额,设投资天数为(单位:天),所得累计回报金额是(单位:元),于是得到三种方案的累计回报金额,,与投资天数的几组对应值:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | |
8 | 24 | 48 | 80 | 120 | 168 | 224 | 288 | 360 | 440 | |
0.5 | 1.5 | 3.5 | 7.5 | 15.5 | 31.5 | 63.5 | 127.5 | 255.5 |
其中________;
(3)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,,并画出,,的图象;
注:为了便于分析,用虚线连接离散的点.
(4)结合图象,小腾给出了依据不同的天数而选择对应方案的建议:
_________________________________________________________________________