题目内容
【题目】在△ABC中,AD是△ABC的角平分线.
(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD.
(2)如图1,在(1)的条件下,若CD=2BD,S△ABD=10,求△BCE的面积.
(3)如图2,M为BC的中点,过M作MN∥AD交AC于点N,猜想线段AB、AC、AN之间的数量关系?请写出你的猜想,并给予证明.
【答案】(1)见解析;(2)90;(3)AC=AB+2AN,见解析
【解析】
(1)角平分线的定义得出∠BAD=∠CAD,由平行线的性质得出∠BAD=∠E,∠CAD=∠ACE,则∠E=∠ACE,由等腰三角形的性质得出AC=AE,AF⊥EC,推出,即可得出结论;
(2)求出BC=3BD,证出△ABD∽△EBC,则,即可得出结果;
(3)延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,则∠MBF=∠C,∠F=∠MNC,由中点得出BM=CM,由AAS证得△BFM≌△CNM得出BF=CN,由MN∥AD,得出∠BAD=∠E,∠CAD=∠MNC=∠ANE,则∠E=∠ANE=∠F,得出AE=AN,BE=BF,推出BF=AB+AN,即可得出结论.
(1)证明:∵AD为△ABC的角平分线,
∴∠BAD=∠CAD,
∵CE∥AD,
∴∠BAD=∠E,∠CAD=∠ACE,
∴∠E=∠ACE,
∴AC=AE,
∵F为EC的中点,
∴AF⊥EC,
∵AD∥EC,
∴,
∴AF⊥AD;
(2)解:∵CD=2BD,
∴BC=3BD,
∴AD∥CE,
∴△ABD∽△EBC,
∴,
∴;
(3)解:AC=AB+2AN;理由如下:
延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,如图2所示:
∴∠MBF=∠C,∠F=∠MNC,
∵M为BC的中点,
∴BM=CM,
在△BFM和△CNM中,
,
∴△BFM≌△CNM(AAS),
∴BF=CN,
∵MN∥AD,
∴,∠CAD=∠MNC=∠ANE,
∴∠E=∠ANE=∠F,
∴AE=AN,BE=BF,
∴BF=AB+AN,
∴.
【题目】有这样一个问题:探究函数的图象与性质.小彤根据学习函数的经验,对函数的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:
x | -4 | -3.5 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3.5 | 4 | ||
y |
| 0 |
|
| m |
|
|
(1)求m的值为 ;
(2)如图,在平面直角坐标系x0y 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;
(3)方程实数根的个数为 ;
(4)观察图象,写出该函数的一条性质 ;
(5)在第(2)问的平面直角坐标系中画出直线,根据图象写出方程的一个正数根约为 (精确到0.1).