题目内容
如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°。
∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,
∴∠OAB=∠ACD,∠OBA=∠CAD。
∵在△AOB与△CDA中,,
∴△AOB≌△CDA(ASA)。
∴CD=OA=1,AD=OB=2。
∴OD=OA+AD=3。
∴C(3,1)。
∵点C(3,1)在抛物线上,
∴,解得:。
∴抛物线的解析式为:。
(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=。
∴S△ABC=AB2=。
设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),
∴,解得。
∴直线BC的解析式为。
同理求得直线AC的解析式为:。
如答图1所示,设直线l与BC、AC分别交于点E、F,
则。
在△CEF中,CE边上的高h=OD﹣x=3﹣x.
由题意得:S△CEF=S△ABC,即: EF•h=S△ABC。
∴,整理得:(3﹣x)2=3。
解得x=3﹣或x=3+(不合题意,舍去)。
∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分。
(3)存在。如答图2所示,
过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1。
过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形。
过点P作PH⊥x轴于点H,
则易证△PAH≌△BCG。
∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2。
∴P(﹣2,1)。
∵抛物线解析式为:,当x=﹣2时,y=1,即点P在抛物线上。
∴存在符合条件的点P,点P的坐标为(﹣2,1).。
解析
已知抛物线 a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
x | … | ―1 | 0 | 3 | … |
… | 0 | 0 | … |
(2)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).
①求y2与x之间的函数关系式;
②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.