题目内容
【题目】如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.
(1)求二次函数的解析式;
(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;
(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.
【答案】(1)抛物线解析式y=x2–x+1;(2)点P坐标为(1,0),(3,0),(,0),(,0);(3)a=或.
【解析】
(1) 将B、C两点坐标代入二次函数解析式,通过联立方程组可求得b、c的值,进而求出函数解析式;
(2)设P(x,0),由△PBC是直角三角形,分∠CBP=90°与∠BPC=90°两种情况讨论,运用勾股定理可得x的值,进而得到P点坐标;
(3)假设成立有△APQ∽△ADB或△APQ∽△ABD,则对应边成比例,可求出a的值.
(1)∵二次函数y=0.5x2+bx+c的图象过点B(0,1)和C(4,3)两点,
∴,解得,
∴抛物线解析式y=x2–x+1.
(2)设点P坐标为(x,0).
∵点P(x,0),点B(0,1),点C(4,3),
∴PB==,
CP= =,
BC= =2,
若∠BCP=90°,则BP2=BC2+CP2.
∴x2+1=20+x2–8x+25,∴x=.
若∠CBP=90°,则CP2=BC2+BP2.
∴x2+1+20=x2–8x+25,∴x=.
若∠BPC=90°,则BC2=BP2+CP2.
∴x2+1+x2–8x+25=20,
∴x1=1,x2=3,
综上所述:点P坐标为(1,0),(3,0),(,0),(,0).
(3)a=或.
∵抛物线解析式y=x2–x+1与x轴交于点D,点E,
∴0=x2–x+1,∴x1=1,x2=2,∴点D(1,0).
∵点B(0,1),C(4,3),
∴直线BC解析式y=x+1.
当y=0时,x=–2,∴点A(–2,0).
∵点A(–2,0),点B(0,1),点D(1,0),
∴AD=3,AB=.
设经过t秒,∴AP=2t,AQ=at,
若△APQ∽△ADB,
∴,即,∴a=,
若△APQ∽△ABD,∴,即,∴a=.
综上所述:a=或.
【题目】在“五四青年节”来临之际,某校举办了以“我的青春我做主”为主题的演讲比赛. 并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级:A:优秀,B:良好,C:一般,D:较差),并制作了如下统计图表(部分信息未给出):
等级 | 人数 |
A | m |
B | 20 |
C | n |
D | 10 |
请根据统计图表中的信息解答下列问题:
(1)这次共抽取了________名参加演讲比赛的学生,统计图中a=________,b=________;
(2)若该校学生共有2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的有多少人?
(3)若演讲比赛成绩为A等级的学生中恰好有2名女生,其余的学生为男生,从A等级的学生中抽取两名同学参加全市演讲比赛,求抽中一名男生和一名女生的概率.