题目内容

【题目】如图1,O为直线AB上一点,过点O作射线OC,AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OMOC都在直线AB的上方.

(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=   (直接写结果)

(2)(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;

(3)(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.

【答案】(1)5;(2)5秒时OC平分∠MON,理由详见解析;(3)详见解析.

【解析】

(1)构建方程即可解决问题;
(2)根据∠MOC=45°,构建方程求解即可;

(3)根据∠AON+BOM=90°,∠BOC=COM,设∠AON3t,∠AOC30°+6t,再根据题意列出方程求解即可.

(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,

∵∠AOC=30°,

∴∠BOC=2∠COM=150°,

∴∠COM=75°,

∴∠CON=15°,

∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,

解得:t=15°÷3°=5秒;

是,理由如下:

∵∠CON=15°,∠AON=15°,

∴ON平分∠AOC;

(2)5秒时OC平分∠MON,理由如下:

∵∠AON+∠BOM=90°,∠CON=∠COM,

∵∠MON=90°,

∴∠CON=∠COM=45°,

三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,

∠AON3t,∠AOC30°+6t,

∵∠AOC﹣∠AON=45°,

可得:6t﹣3t=15°,

解得:t=5秒;

(3)如上图:OC平分∠MOB

∵∠AON+∠BOM=90°,∠BOC=∠COM,

三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,

∠AON3t,∠AOC30°+6t,

∴∠COM(90°﹣3t),

∵∠BOM+∠AON=90°,

可得:180°﹣(30°+6t)=(90°﹣3t),

解得:t=秒;

答:经过∠MOC=36°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网