题目内容
【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
【答案】(1)根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠B=∠BCF,由E是BC的中点可得BE=CE,再结合对顶角相等可证得△ABE≌△FCE,问题得证;
(2)由AB=CD,AB=CF结合AD=2AB可证得AD=DF,再根据等腰三角形的性质即可作出判断.
【解析】试题分析:(1)由在ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.
试题解析:(1)∵四边形ABCD是平行四边形, ∴AB∥DF, ∴∠ABE=∠FCE, ∵E为BC中点, ∴BE=CE,
在△ABE与△FCE中,, ∴△ABE≌△FCE(ASA), ∴AB=FC;
(2)∵AD=2AB,AB=FC=CD, ∴AD=DF, ∵△ABE≌△FCE, ∴AE=EF, ∴DE⊥AF.
练习册系列答案
相关题目