题目内容

【题目】正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:

(1)四边形EBFD是矩形;

(2)DG=BE.

【答案】(1)证明见解析;(2)证明见解析

【解析】

试题分析:(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;

(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.

试题解析:(1)正方形ABCD内接于⊙O,∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又DF∥BE,∠EDF+∠BED=180°,∠EDF=90°,四边形EBFD是矩形;

(2))正方形ABCD内接于⊙O,的度数是90°,∠AFD=45°,又∠GDF=90°,∠DGF=∠DFC=45°,DG=DF,又在矩形EBFD中,BE=DF,BE=DG.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网