题目内容
【题目】□ABCD中,∠A=60°,点E、F分别在边AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,则EF的长度为( )
A. B. C. D. 5
【答案】A
【解析】
由DE=DF,AE=2,FC=3可知AB-BC=1,过点E作EM⊥AB于M,根据30°角所对的直角等于斜边的一半可得AM=1,进而得出BM=BC,将△BEM顺时针旋转120°得△BEN,连接FN,可证△BEF≌△BFN,即可得出EF=FN,过点N作NG⊥DC交DC的延长线于点G,利用勾股定理即可求出答案.
解:过点E作EM⊥AB于M,
在Rt△AEM中,∠A=60°,
∴∠AEM=30°,
∴AM=AE=1,
∴ME=,
又∵DE=DF,AE=2,FC=3,
∴DC-AD=1,即AB-BC=1,
∴BM=BC,
将△BEM顺时针旋转120°得△BEN,连接FN,则CN=EM=,BE=BN,
∵∠EBF=60°,∠EBN=120°,
∴∠NBF=60°,
∴∠EBF=∠NBF
又∵BE=BN,BF=BF,
∴△BEF≌△BFN,
∴EF=FN,
过点N作NG⊥DC交DC的延长线于点G,
∵∠GCN=180°-60°-90°=30°,
∴NG=NC=
∴CG=
∴FG=3+=
∴FN=
∴EF=
故答案为.
练习册系列答案
相关题目