题目内容

【题目】如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则 =( )

A.
B.
C.
D.

【答案】B
【解析】解:如图,延长GP交DC于点H,

∵P是线段DF的中点,

∴FP=DP,

由题意可知DC∥GF,

∴∠GFP=∠HDP,

∵∠GPF=∠HPD,

∴△GFP≌△HDP,

∴GP=HP,GF=HD,

∵四边形ABCD是菱形,

∴CD=CB,

∴CG=CH,

∴△CHG是等腰三角形,

∴PG⊥PC,(三线合一)

又∵∠ABC=∠BEF=60°,

∴∠GCP=60°,

=

所以答案是:B.

【考点精析】掌握菱形的性质和锐角三角函数的定义是解答本题的根本,需要知道菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网