题目内容

【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

【答案】
(1)解:设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,

根据题意得:

解得:

答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.


(2)解:设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,

根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.

∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,

解得:5≤m≤7,

∴有三种不同方案.

∵w=200m+4000中,200>0,

∴w值随m值的增大而增大,

∴当m=5时,总费用取最小值,最小值为5000元.

答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.


【解析】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w与m之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题.
【考点精析】通过灵活运用一元一次不等式组的应用,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网