题目内容

【题目】如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点.

(1)探求AO到OD的数量关系,并说明理由;
(2)如图②,若P,N分别为BE,BC上的动点.
(Ⅰ)当PN+PD的长度取得最小值时,求BP的长度;
(Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=

【答案】
(1)

解:AO=2OD,

理由:∵△ABC是等边三角形,

∴∠BAO=∠ABO=∠OBD=30°,

∴AO=OB,

∵BD=CD,

∴AD⊥BC,

∴∠BDO=90°,

∴OB=2OD,

∴OA=2OD;


(2)

如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,

则此时PN+PD的长度取得最小值,

∵BE垂直平分DD′,

∴BD=BD′,

∵∠ABC=60°,

∴△BDD′是等边三角形,

∴BN= BD=

∵∠PBN=30°,

=

∴PB=

如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,

连接Q′D′,即为QN+NP+PD的最小值.

根据轴对称的定义可知:∠Q′BN=∠QBN=30°,∠QBQ′=60°,

∴△BQQ′为等边三角形,△BDD′为等边三角形,

∴∠D′BQ′=90°,

∴在Rt△D′BQ′中,

D′Q′= =

∴QN+NP+PD的最小值=

故答案为:


【解析】(1)根据等边三角形的性质得到∠BAO=∠ABO=∠OBD=30°,得到AO=OB,根据直角三角形的性质即可得到结论;(2)(Ⅰ)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,则此时PN+PD的长度取得最小值,根据线段垂直平分线的想知道的BD=BD′,推出△BDD′是等边三角形,得到BN= BD= ,于是得到结论;(Ⅱ)如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′为等边三角形,△BDD′为等边三角形,解直角三角形即可得到结论.
【考点精析】关于本题考查的三角形的“三线”,需要了解1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网