题目内容
【题目】如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第(100)个图案有___________________个三角形.
【答案】301
【解析】
观察图形可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形.把n=100代入即可求解.
∵第(1)个图案有3+1=4个三角形,
第(2)个图案有3×2+1=7个三角形,
第(3)个图案有3×3+1=10个三角形,
…
∴第n个图案有(3n+1)个三角形.
把n=100代入得,3×100+1=301.
故答案为:301.
练习册系列答案
相关题目
【题目】观察下列一组勾股数:
第1组 | 3=2×1+1 | 4=2×1×(1+1) | 5=2×1×(1+1)+1 |
第2组 | 5=2×2+1 | 12=2×2×(2+1) | 13=2×2×(2+1)+1 |
第3组 | 7=2×3+1 | 24=2×3×(3+1) | 25=2×3×(3+1)+1 |
第4组 | 9=2×4+1 | 40=2×4×(4+1) | 41=2×4×(4+1)+1 |
… | … | … | … |
观察以上各组勾股数的特点:
(1)请写出第7组勾股数,,;
(2)写出第组勾股数,,.