ÌâÄ¿ÄÚÈÝ
ÒÑÖªA£¬AÊÇÅ×ÎïÏßy=
x2ÉÏÁ½µã£¬A1B1£¬A3B3·Ö±ð´¹Ö±ÓÚxÖᣬ´¹×ã·Ö±ðΪB1£¬B3£¬µãCÊÇÏ߶ÎA1A3µÄÖе㣬¹ýµãC×÷CB2´¹Ö±ÓÚxÖᣬ´¹×ãΪB2£¬CB2½»Å×ÎïÏßÓÚµãA2£®
£¨1£©Èçͼ1£¬ÒÑÖªA1£¬A3Á½µãµÄºá×ø±êÒÀ´ÎΪ1£¬3£¬ÇóÏ߶ÎCA2µÄ³¤£»
£¨2£©Èçͼ2£¬Èô½«Å×ÎïÏßy=
x2¸ÄΪÅ×ÎïÏßy=
x2-x+1£¬ÇÒA1£¬A2£¬A3ÈýµãµÄºá×ø±êΪÁ¬ÐøµÄÕûÊý£¬ÆäËûÌõ¼þ²»±ä£¬ÇóÏ߶ÎCA2µÄ³¤£»
£¨3£©Èô½«Å×ÎïÏßy=
x2¸ÄΪÅ×ÎïÏßy=ax2+bx+c£¨a£¾0£©£¬A1£¬A2£¬A3ÈýµãµÄºá×ø±êΪÁ¬ÐøÕûÊý£¬ÆäËûÌõ¼þ²»±ä£¬ÊÔ²ÂÏëÏ߶ÎCA2µÄ³¤£¨ÓÃa£¬b£¬c±íʾ£¬²¢Ö±½Óд³ö´ð°¸£©£®
1 |
2 |
£¨1£©Èçͼ1£¬ÒÑÖªA1£¬A3Á½µãµÄºá×ø±êÒÀ´ÎΪ1£¬3£¬ÇóÏ߶ÎCA2µÄ³¤£»
£¨2£©Èçͼ2£¬Èô½«Å×ÎïÏßy=
1 |
2 |
1 |
2 |
£¨3£©Èô½«Å×ÎïÏßy=
1 |
2 |
£¨1£©¡ßA1£¬A3µÄºá×ø±êÒÀ´ÎΪ1£¬3£¬
¡àA1B1=
¡Á12=
£¬A3B3=
¡Á32=
£¬
ÓÉÒÑÖª¿ÉµÃA1B1¡ÎCB2¡ÎA3B3£®
ÓÖ¡ßCΪA1A3µÄÖе㣬
¡àB2ΪB1B3µÄÖе㣬
¡àB2µãµÄºá×ø±êΪ2£¬
¡àA2B2=
¡Á22=2£¬
¶øCB2=
£¨A1B1+A3B3£©
=
£¨
+
£©+
¡àCA2=CB2-A2B2=
-2
=
£®
£¨2£©ÉèA1£¬A2£¬A3ÈýµãµÄºá×ø±êÒÀ´ÎΪn-1£¬n£¬n+1£¬
ÔòA1B1=
£¨n-1£©2-£¨n-1£©+1£¬A2B2=
n2-n+1£¬
A3B3=
£¨n+1£©2-£¨n+1£©+1£¬
ÓÉÒÑÖª¿ÉµÃA1B1¡ÎA3B3¡ÎAB2£¬
¡àCB2=
£¨A1B1+A3B3£©
=
[
£¨n-1£©2-£¨n-1£©+1+
£¨n+1£©2-£¨n+1£©+1]
=
n2-n+
£¬
¡àCA2=CB2-A2B2=
n2-n+
-£¨
n2-n+1£©=
£®
£¨3£©µ±a£¾0ʱ£¬CA2=a£®
¡àA1B1=
1 |
2 |
1 |
2 |
1 |
2 |
9 |
2 |
ÓÉÒÑÖª¿ÉµÃA1B1¡ÎCB2¡ÎA3B3£®
ÓÖ¡ßCΪA1A3µÄÖе㣬
¡àB2ΪB1B3µÄÖе㣬
¡àB2µãµÄºá×ø±êΪ2£¬
¡àA2B2=
1 |
2 |
¶øCB2=
1 |
2 |
=
1 |
2 |
1 |
2 |
9 |
2 |
5 |
2 |
¡àCA2=CB2-A2B2=
5 |
2 |
=
1 |
2 |
£¨2£©ÉèA1£¬A2£¬A3ÈýµãµÄºá×ø±êÒÀ´ÎΪn-1£¬n£¬n+1£¬
ÔòA1B1=
1 |
2 |
1 |
2 |
A3B3=
1 |
2 |
ÓÉÒÑÖª¿ÉµÃA1B1¡ÎA3B3¡ÎAB2£¬
¡àCB2=
1 |
2 |
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
3 |
2 |
¡àCA2=CB2-A2B2=
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
£¨3£©µ±a£¾0ʱ£¬CA2=a£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿