题目内容
如图,抛物线与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.
(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.
(1)A(1,0),B(5,0),证明见解析
(2)△MDE能成为等腰直角三角形,此时点P坐标为(,3)
(3)能。此时点P坐标为(,
)。
解析试题分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标。如答图1所示,作辅助线,构造全等三角形△AMF≌△BME,得到点M为为Rt△EDF斜边EF的中点,从而得到MD=ME,问题得证。
在中,令y=0,即﹣
,解得x=1或x=5,
∴A(1,0),B(5,0)。
如答图1所示,分别延长AD与EM,交于点F,
∵AD⊥PC,BE⊥PC,∴AD∥BE。∴∠MAF=∠MBE。
在△AMF与△BME中,
∵∠MAF=∠MBE,MA=MB,∠AMF=∠BME,
∴△AMF≌△BME(ASA)。
∴ME=MF,即点M为Rt△EDF斜边EF的中点。
∴MD=ME,即△MDE是等腰三角形。
(2)首先分析,若△MDE为等腰直角三角形,直角顶点只能是点M。如答图2所示,设直线PC与对称轴交于点N,证明△ADM≌△NEM,得到MN=AM,从而求得点N坐标为(3,2);利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P的坐标。
能。
∵,∴抛物线的对称轴是直线x=3,M(3,0)
令x=0,得y=﹣4,∴C(0,﹣4)。
△MDE为等腰直角三角形,有3种可能的情形:
①若DE⊥EM,
由DE⊥BE,可知点E、M、B在一条直线上,而点B、M在x轴上,因此点E必然在x轴上。
由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,不符合题意。
故此种情况不存在。
②若DE⊥DM,与①同理可知,此种情况不存在。
③若EM⊥DM,如答图2所示,
设直线PC与对称轴交于点N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA。
在△ADM与△NEM中,
∵∠DMA =∠EMN,DM = EM,∠ADM=∠NEM=135°,
∴△ADM≌△NEM(ASA)。∴MN=MA。
∵M(3,0),MN=MA=2,∴N(3,2)。
设直线PC解析式为y=kx+b,
∵点N(3,2),C(0,﹣4)在抛物线上,
∴,解得
。
∴直线PC解析式为y=2x﹣4。
将y=2x﹣4代入抛物线解析式得: ,解得:x=0或x=
。
当x=0时,交点为点C;当x=时,y=2x﹣4=3。
∴P(,3)。
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,3)。
(3)当点P是抛物线在x轴下方的一个动点时,解题思路与(2)完全相同:
如答题3所示,设对称轴与直线PC交于点N,
与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M。
∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB。
在△DMN与△EMB中,
∵∠SMN =∠EMB,DM = EM,∠MDN=∠MEB=45°,
∴△DMN≌△EMB(ASA)。∴MN=MB。∴N(3,﹣2)。
设直线PC解析式为y=kx+b,
∵点N(3,﹣2),C(0,﹣4)在抛物线上,
∴,解得
。
∴直线PC解析式为y=x﹣4。
将y=x﹣4代入抛物线解析式得:
,解得:x=0或x=
。
当x=0时,交点为点C;当x=时,y=
x﹣4=
。∴P(
,
)。
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,
)。
![](http://thumb.zyjl.cn/images/loading.gif)
某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个) | … | 30 | 40 | 50 | 60 | … |
销售量y(万个) | … | 5 | 4 | 3 | 2 | … |
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?