题目内容
如图,直线AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,若OB=6cm,OC=8cm,则∠BOC=______度,⊙O的半径是______cm,BE+CG=______cm.
连接OF;
根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD
∴∠ABC+∠BCD=180°,
∴∠OBE+∠OCF=90°,
∴∠BOC=90°;
∵OB=6cm,OC=8cm,
∴BC=10cm,
∵OF⊥BC,
∴OF=
=4.8cm,
∴BE+CG=BC=10cm.
根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD
∴∠ABC+∠BCD=180°,
∴∠OBE+∠OCF=90°,
∴∠BOC=90°;
∵OB=6cm,OC=8cm,
∴BC=10cm,
∵OF⊥BC,
∴OF=
OB•OC |
BC |
∴BE+CG=BC=10cm.
练习册系列答案
相关题目