题目内容
【题目】 阅读下面的材料,解答后面的问题
材料:“解方程x4-3x2+2=0””
解:设x2=y,原方程变为y2-3y+2=0,(y-1)(y-2)=0,得y=1或y=2
当y=1时,即x2=1,解得x=±1;
当y=2时,即x2=2,解得x=±
综上所述,原方程的解为x1=1,x2=-1,x3=.x4=-
问题:(1)上述解答过程采用的数学思想方法是______
A.加减消元法 B.代入消元法 C.换元法 D.待定系数法
(2)采用类似的方法解方程:(x2-2x)2-x2+2x-6=0.
【答案】(1)C;(2)x1=-1,x2=3.
【解析】
(1)利用换元法解方程;
(2)设x2-2x=y,原方程化为y2-y-6=0,求出y,把y的值代入x2-2x=y,求出x即可.
解:(1)上述解答过程采用的数学思想方法是换元法.
故答案是:C;
(2)设x2-2x=y,原方程化为y2-y-6=0,
整理,得
(y-3)(y+2)=0,
解得y=3或y=-2
当y=3时,即x2-2x=3,解得x=-1或x=3;
当y=-2时,得x2-2x=-2,即(x-1)2=-1,方程无解,
综上所述,原方程的解为x1=-1,x2=3.
练习册系列答案
相关题目
【题目】二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A. 3 B. 2 C. 1 D. 0