题目内容
【题目】如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.
证明:∵ DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°( )
∴DE∥AB(_________ ___)
∴∠2=____ (__________ ___________)
∠1= (____________ _________)
又∵∠1=∠2(_____________________)
∴∠A=∠3(_____________________)
【答案】详见解析
【解析】
由垂直的定义可得∠DEC=∠ABC=90°,由同位角相等两直线平行可得到DE∥AB,再根据平行线的性质得∠2=∠3,∠1=∠A,运用等量代换即可得∠A=∠3.
证明:∵ DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°(垂直的定义)
∴DE∥AB(同位角相等,两直线平行)
∴∠2=(∠3)(两直线平行,内错角相等)
∠1=(∠A) (两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠A=∠3(等量代换)
练习册系列答案
相关题目