题目内容

【题目】ACBECD均为等腰直角三角形,∠ACB=ECD=90°.

(1)如图1,点EBC上,则线段AEBD有怎样的关系?请直接写出结论(不需证明);

(2)若将DCE绕点C旋转一定的角度得图2,则(1)中的结论是否仍然成立?请说明理由;

(3)当DCE旋转到使∠ADC=90°时,若AC=5,CD=3,求BE的长.

【答案】(1)AE=BD,AE⊥BD ;(2)见解析;(3)

【解析】分析:(1)延长AEBDF,由△AEC≌△BDC,可得AE=BD,再利用同角的余角相等,可得出AE⊥BD ;(2)不发生变化,只要证明△AEC≌△BDC,推出AE=BD,∠EAC=∠DBC,由∠EAC+AFC =90°,∠AFC=BFG,可得∠BGF=90°,从而得证;(3)过B作BM⊥EC于M,则∠M=90°,在RT△ACD中利用勾股定理可得AD=4,再利用△BCM≌△ACD,得出CM=CD=3, BM=AD=4,在△BME中利用勾股定理即可求出结果.

本题解析:

(1)AE=BD,AE⊥BD ;

(2)(1)中的结论仍然成立,理由如下:

ACB和△ECD均为等腰直角三角形,∠ACB=∠ECD=90°

AC=BC, ∠ACE=∠BCDEC=DC

∴△ACE≌△BCD(SAS), AE=BD, ∠EAC=∠DBC

EAC+∠AFC =90°,∠AFC=∠BFG

DBC+∠BFG=90°, BGF=90°,

AEBD

(3) BBMECM,则∠M=90°

ADC=90°,AC=5,CD=3,AD=

ACB=∠ECD=90°, CBE+∠ACD=180°

CBE+∠BCM=180°, BCM=∠ACD

M=∠ADC=90°, AC=BC

∴△BCM≌△ACD(AAS), CM=CD=3, BM=AD=4

CE=CD=3,EM=6,

BE=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网