题目内容
【题目】如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A,
(1)求点C的坐标及直线l2的解析式;
(2)求△ABC的面积.
【答案】(1)C(﹣1,3),直线l2的解析式为y=2x+5;(2)△ABC的面积为.
【解析】
试题(1)由题意把点C(-1,m)的坐标代入y=-x+2即可求得m的值,再结合直线l2经过点D(0,5)即可根据待定系数法求得直线l2的解析式;
(2)先分别求得两条直线与x轴的交点坐标,再根据三角形的面积公式即可求得结果.
(1)在y=-x+2中,当时,
∴点C的坐标为(-1,3)
设直线l2的解析式为
∵图象过点C(-1,3),D(0,5)
∴,解得
∴直线l2的解析式为;
(1)在y=-x+2中,当时,,,即A点坐标为(2,0)
在中,当时,,,即A点坐标为(,0)
∴
练习册系列答案
相关题目
【题目】某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减(辆) | -1 | +3 | -2 | -4 | +7 | -5 | -10 |
(1)生产量最多的一天比生产量最少的一天多生产多少辆?
(2)本周总的生产量是多少辆?